Chapter 5: Language of Chemistry

1. Symbols of Elements

- Every element is represented by a unique chemical symbol, usually derived from its **English** or **Latin** name.
- Example:
 - o Hydrogen (H), Oxygen (O), Carbon (C), Sodium (Na) (from *Natrium*).

2. Formulae of Compounds

- Chemical formulas represent **the composition of a compound** using element symbols and their ratios.
- Example:
 - o Water (H_2O) → 2 Hydrogen atoms + 1 Oxygen atom
 - o Carbon dioxide (CO₂) \rightarrow 1 Carbon atom + 2 Oxygen atoms
 - o Sodium chloride (NaCl) → 1 Sodium atom + 1 Chlorine atom

3. Chemical Equations (From Word Equations)

- A word equation describes a reaction in words:
 - \circ Hydrogen + Oxygen \rightarrow Water
- A **chemical equation** uses symbols and formulas:
 - \circ 2H₂+O₂ \rightarrow 2H₂O

4. Law of Conservation of Mass

- Statement: "Mass can neither be created nor destroyed in a chemical reaction."
- **Example**: Decomposition of calcium carbonate:

$$CaCO_3 \rightarrow CaO + CO_2$$

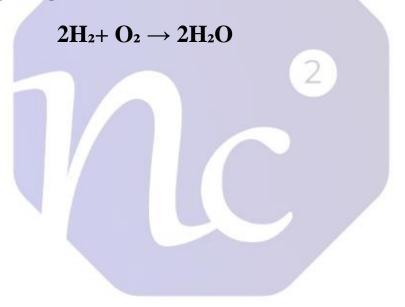
Mass of reactants = Mass of products

5. Balancing Simple Equations

- The law of conservation of mass requires that atoms on both sides of the equation be equal.
- Example (Balancing): $H_2+O_2 \rightarrow H_2O$ (Unbalanced)

$$2H_2+O_2\rightarrow 2H_2O$$
 (Balanced)

6. Information Gathered from a Chemical Equation


- Reactants and products involved.
- Number of atoms/molecules of each substance.
- Proportion of reactants and products (stoichiometry).

7. Limitations of a Chemical Equation

A chemical equation does not provide:

- Catalysts used in the reaction.
- **Reaction conditions** (temperature, pressure, light, etc.).
- Physical states (solid, liquid, gas, aqueous).
- Nature of reaction (exothermic/endothermic, reversible/irreversible).

Example (Complete Equation with Conditions):

